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Abstract

Linear features are relatively short, distinct, non-cultural 1linear
elements mappable on Landsat multispectral scanner images (MSS). Most linear
features are related to local topographic features, such as cliffs, slope
breaks, narrow ridges, and stream valley segments that are interpreted as
reflecting directed aspects of local geologic structure including faults,
zones of fracturing (joints), and the strike of tilted beds.

6,050 linear features were mapped on computer-enhanced Landsat MSS images
of 11 Landsat scenes covering an area from the Rio Grande rift zone on the
east to the Grand Canyon on the west and from the San Juan Mountains,
Colorado, on the north to the Mogollon Rim on the south. Computer-aided
statistical analysis of the 1linear feature data revealed 5 statistically
important trend intervals: 1.) N.10W.-N.1l6E., 2.) N.35-72E., 3.) N.33-59.,
4.) N.74-83W., and 5.) N.89-9-W. and N.89-90E. Subsequent analysis of the
distribution of the linear features indicated that only the first three trend
intervals are of regional geologic significance. Computer-generated maps of
the linear features in each important trend interval were prepared, as well as
contour maps showing the relative concentrations of linear features in each
trend interval. These maps were then analyzed for patterns suggestive of
possible regional tectonic lines.

20 possible tectonic 1lines; or lineaments, were interpreted from the
maps. One lineament is defined by an obvious change in overall linear feature
concentrations along a northwest-trending line cutting across northeastern
Arizona. Linear features are abundant northeast of the line and relatively
scarce to the southwest. The remaining 19 lineaments represent the axes of
clusters of parallel linear features elongated in the direction of the linear
feature trends. Most of these lineaments mark previously known structural

zones controlled by linear features in the Precambrian basement or show newly



recognized relationships to geological and/or geophysical patterns that
suggest probable influence by buried basement features. The remaining few
lineaments are not strongly correlative with geological or geophysical
patterns, but on the basis of existing data they cannot be dismissed as being
possible expressions of basement features.

INTRODUCTION

This report summarizes the results of computer analyses of the
distribution and preferred orientation characteristics of linear features
mapped from computer—enchanced Landsat multispectral scanner (MSS) images of
the Four Corners region, Colorado, New Mexico, Utah, and Arizona. Computer-
compatible magnetic tapes of 11 Landsat scenes were acquired from the EROS
Data Center, Sioux Falls, South Dakota, and digitally processed in the Branch
of Petrophysics and Remote Sensing Image Processing Laboratory (Figure 1 and
Table 1). Contrast-stretched and edge-enchanced 1:800,000-scale positive
transparencies were prepared for each of the 4 bands of Landsat MSS data for
each scene (8 images per scene).

Linear features were photogeologically interpreted on the Landsat images,
compiled on 1:250,000 topographic base maps, and digitized for computer
analysis. Statistical techniques were used to determine the preferred
orientation characteristics of the linear feature data and computer graphics
were used to prepare maps of the linear features in important azimuthal trend
intervals. To facilitate the interpretation of areal distribution patterns,
contour maps showing the relative concentration of linear features in the
important trend intervals were also prepared. Lineaments formed by boundaries
between major concentration domains and by elongated clusters of parallel
linear features were then defined and compared to regional geological and

geophysical data.



Table 1. Landsat used in mapping the linear features in the Four Corners
region. Scene numbers correspond to scene centers shown in

Figure 1.
Scene # Scene ID Date Sun Elevation (0) Sun Azimuth (0)
1 1337-17320 6/25/73 62 111
2 2873-17001 6/13/77 56 102
3 2513-17144 6/18/76 59 102
4 2584-17060 8/18/76 49 125
5 2584-17063 8/28/76 49 123
6 1408-17260 9/04/73 52 130
7 2637~16584 10/20/76 34 144
8 2493-17032 5/29/76 59 108
9 2493-17034 5/29/76 59 106
10 2636-16533 10/19/76 36 143
11 2636-16535 10/19/76 37 142
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Figure |. Index map of the Four Corners region showing major tectonic
features and centers of Landsat scenes used in this study. Intrusive
centers--H,Henry Mountains; A,Abajo Mountains; U,Ute Mountains; W,Wilson
Peak; C,Carrizo Mountains; HB,Hopi Buttes; J,Jemez Mountains.



Several investigations have dealt with the mapping and interpretation of
linear features and lineaments from Landsat images of portions of the area
covered by this study. In northeastern Arizona, Gutman and Heckmann (1977)
mapped faults and indistinct structural elements from Landsat images and
attempted to correlate these features with known geological features and
anomalous patterns in gravity and magnetic data. No systematic analysis of
the regional patterns formed by the 1linear features and lineaments was
conducted. Babcock and others (1979) also mapped linear features on Landsat
images of northeastern Arizona to test the possibility of using these data as
a basis for exploring for fracture-controlled water supplies. Knepper (1978)
mapped linear features from Landsat images of the Rio Grande rift zone in
north-central New Mexico and discovered possible tectonic zones through
statistical analysis of preferred orientation characteristics and analysis of
patterns formed by linear feature concentrations.’ Gableman (J. W. Gableman,
unpub. data) studied lineaments and spectral patterns mapped from Landsat
images of the Grants uranium belt, New Mexico, to determine whether these data
reflect known uranium occurrences and, Zech and Knepper (1979) reported the
length and preferred orientation characteristics of linear features mapped
from Landsat images of the Gallup-Grants mineral belt. In a paper
illustrating the concept of "structural corridors” defined on Landsat
lineament maps and regional gravity and magnetic maps, O'Driscoll (1981)
identified north-west-trending discontinuities in the pattern of lineament
densities displayed on an optically diffused lineament map that includes the

northern 75 percent of the Four Cormners region.



LANDSAT DATA AND IMAGE PROCESSING

Users can acquire Landsat MSS imagery data from the EROS Data Center,
Sioux Falls, South Dakota, in a variety of forms. For this study, the digital
data were acquired on 9-track, 1600 BPI computer—compatible magnetic tapes.
One tape contains all the digital data numbers (DN) for the four bands of MSS
data of a single scene, as well as supplementary information about the data.
The four bands of MSS data, identified by NASA as bands 4, 5, 6, and 7,
contain measurements of solar radiation reflected from the earth's surface in
the wavelength ranges of .5-.6, .6-.7, .7-.8, and .8-1.1 wm, respectively.
Bands 4 and 5 correspond to the green and red portions of the visible
spectrum; bands 6 and 7 are in the near-infrared.

Processing of the digital MSS data consists of three sets of
operations: 1) preparation of the data, 2) computer enhancement, and 3)
preparation of hardcopy images. Preparing the MSS data set mainly iavolves
getting the data from the EROS data tape on to a magnetic disk where they are
readily available for subsequent computer processing operations. The MSS data
on the EROS data tape are contained in four files that represent the image
data in four geographic strips of ground coverage needed to produce a full
Landsat scene. Within these files, the data for the four MSS bands are
interleaved (NASA band interleaved format) such that each tape record contains
all the DN values for a single sanline of the image. The four EROS tape files
are read into the computer, reformatted, and placed on a large-volume magnetic
disk. The four disk files are then concatenated to produce a single, large
disk file representing the band interleaved MSS data for the full geographic
coverage of the Landsat scene. This large disk file is suitable for input

into the computer enhancement programs.



Computer enhancement involves the manipulation of the digital MSS data in
order to ultimately produce images that are more easily interpreted. Two
types of computer enhancement were used: contrast stretching and edge
enhancement. On the EROS data tape, the DN values in bands 4, 5, and 6 are in
the range of 0-127, although they usually occupy only a portion of that range:
band 7 data are in the DN range of 0-64. 1In the preparation of black and
white images, 256 gray levels are available for displaying the data. By
stretching the MSS DN values to occupy the full 256 gray levels, the image
contrast between DN values is significantly increased. Contrast stretched
images were prepared for each band of MSS data for each of the 11 Landsat
scenes.

Edge enhancement is a type of high-pass filter that enhances the high
frequency information contained in the MSS data. Figure 2 illustrates the
edge enhancement algorithm used in this study. The effect of edge enhancement
is to increase the DN contrast at boundaries between groups of dissimilar
pixels (picture elements), thereby producing sharper boundaries on black-and-
white images. The edge enhanced data are contrast stretched in a manner
similar to that described above before images are made on film.

The final step in digital image processing is to prepare high-quality
hardcopy images that are suitable for visual interpretation. First, the data
need to be corrected for geometric distortions inherent in the MSS data
(Condit and Chavez, 1979, p. 11). These distortions are caused by
oversampling in the scanline direction (aspect ratio distortion) and the
rotation of the earth during a Landsat pass (skew distortion). The
geometrically corrected, computer-enhanced data are then used to modulate a
light source that exposes black and white film in proportion to the DN values

of the processed data, producing film transparencies. The scale of the
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N ALGORITHM:
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Figure 2. Edge enhancement algorithm and an example of how it enhances
the linear boundary between 4's and 2's in the original data. The 0.5

addback factor used in the sample calculation of the pixel shown by the
dashed line generally produces good results.



transparencies is a function of the playback instrument used to expose the
film. The images prepared for this study were made on a Optronics
International P-1700 photographic playback systemhi/ which allows the full
Landsat scene to be recorded on a 10"x10" piece of film at a scale of
1:800,000.

IMAGE INTERPRETATION

The 1:800,000-scale black and white transparencies of the contrast
stretched and edge enhanced images of each Landsat scene were used in the
mapping of linear features in the Four Corners region. The term "linear
feature”, as used in this report, refers to distinct, non-cultural linear
elements observed in the MSS images. No attempt was made to identify vague or
uncertain linear features or to interpret long, discontinuously expressed
lineaments. From their appearance on the images and by plotting the mapped
linear features on 1:250,000-scale topographic maps, it was determined that
most of the linear features are expressions of topographic features such as
cliffs, slope breaks, resistant dikes, and stream valley segments. However,
numerous linear features were mapped that are expressed on the images as sharp
tonal boundaries, but that are not related to topography. These 1linear
features are caused by spectral differences between adjacent rock or soil
units or between areas with different vegetation types or densities.

For each individual Landsat scene, linear features were mapped on a
separate mylar overlay by successively transferring the overlay to each of the
contrast-stretched and edge enhanced images prepared for the scene. Mapping
was done on a light table using standard photogeologic interpretation

methods. Interpretation continued until no additional linear features could

Ej Trade names used in this paper are for descriptive purposes only and do not
constitute endorsement by the U.S. Geological Survey.



be identified; the mapped linear features for each scene were compiled on
1:250,000 topographic maps. This allowed linear features related to cultural
features to be excluded from the data set and provided an easy means of
resolving the duplicate mapping of linear features in the overlap areas
between adjacent Landsat scenes. The compiled 1linear features were then
digitized to produce a digital linear feature data set suitable for analysis
by statistical methods.

It should be noted that the Landsat images used in this study were also
used to conduct spectral reflectance studies in the Four Corners region, and
this necessitated the selection of images having a moderately high solar
illumination angle (Table 1). The use of images having a lower solar
illumination angle would have allowed additional 1linear features to be
detected and mapped because of increased shadow enhancement; however, the
regional patterns displayed in the data probably would not be significantly
different.

LINEAR FEATURE ANALYSIS

A total of 6,050 linear features were mapped from the Landsat images of
the Four Corners region, producing a complex map that is difficult to analyze
by visual inspection alone (Figure 3). Locally, some patterns can be
recognized as being of possible geologic importance, but Tregional
relationships are obscure. The objective of linear feature analysis is to
dissect the linear feature data into important elements and to display these
elements in a manner more conducive to regional geologic analysis. The
properties of linear features that can be measured and compared are their
length, orientation, and location. Statistical analysis of the linear
features according to orientation serves to define regionally important

azimuthal trend intervals that may relate to regional geologic or tectonic
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phenomena. The distribution patterns formed by the linear features in the
important azimuthal trend intervals are useful for evaluating the geologic
significance of the linear feature data. These patterns can be displayed by
using computer techniques to prepare maps of the linear features in the
important trend intervals, as well as contour maps showing the relative
density or concentration of the linear features within each trend interval.

Strike-Frequency Analysis

The strike-frequency analysis procedure wused in this study is a
statistical method for helping to define important azimuthal trend intervals
within the linear feature data set. The method is described in detail by
Sawatzky and Raines (1981) and a brief summary is given here. The strike-
frequency analysis computer program counts the number of linear features
(frequency) in each of 180 1l-degree azimuthal trends and compares these
frequencies to the mean frequency of the 180 classes. Some smoothing is
accomplished by generating frequency counts that are the average of the
initial count plus the adjacent l-degree intervals. The significance value of
any given frequency is based on the probability of that frequency occurring in
a data set of known size selected from a uniform population of azimuthal
directions. Frequencies near the mean frequency have low significance values,
and when the counted frequency equals the mean frequency the significance
value is O. As the frequency deviates from the mean frequency, either
positively or negatively, the significance value increases and significant
maxima (high frequency) can be defined at significance values selected by the

user.

11
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Most of the linear features are short and straight and can be digitized
by specifying their end points. However, some linear features are curvilinear
and several points along their length need to be digitized to get a good
representation. These linear features are composed of segments. Strike
frequency analysis can be conducted on either linear features or segments of
linear features. If the analysis is conducted on linear features, an average
orientation, weighted in proportion to segment lengths, is computed for multi-
segment linear features. When the analysis is conducted on segments, each
segment of a multi-segment linear feature is treated as an individual, single-
segment linear feature. The strike frequency analysis can also be weighted in
proportion to the length of the linear feature or segments, thus allowing the
longer linear features and segments to more strongly influence the results of
the analysis. In length-weighted analyses of linear features, the length-
weighting factor of multisegment linear features is the sum of the segment
lengths.

Four versions of the strike-frequency analysis were conducted on the
linear feature data from the Four Corners region: 1) linear features, 2)
length~-weighted 1linear features, 3) segments, and 4) length-weighted
segments. The computer output of each analysis consists of three parts: a
smoothed strike frequency histogram, a table of azimuth versus frequency for
each of the 180 l-degree classes, and a frequency versus significance value
curve. Copies of the computer printout for the four analyses are in Appendix
A.

The objective of strike frequency analysis is to identify one or more
azimuthal trend intervals that appear to be important. The process consists
of two steps: 1) identifying the l~degree intervals that are maxima and
minima at a selected significance value and 2) defining clusters of

significant l-degree maxima and minima that form important azimuthal trend
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intervals. Individual l-degree maxima and minima can be determined from the
computer printout of each analysis by first selecting significance values for
maxima and minima fro& the frequency versus significance value curve and
noting the frequencies at which they occur. For maxima, all frequencies equal
to or greater than that of the selected significance value will be significant
and for minima all frequencies equal to or less than that of the selected
significance value will be significant. The significant l-degree maxima and
minima can then be identified on the table of azimuth versus frequency for the
analysis. For this study, a simple graphical method was used to identify
clusters of l-degree maxima and minima that appear to form important trend
intervals. The l-degree maxima and minima for each analysis were plotted on
four stacked bar graphs each representing 180 degrees of azimuth. Trend
intervals were then selected by visual examination of the results of the four
analyses.

Results of the strike-frequency analyses are shown in Figure 4. Five
trend intervals were selected from the analyses (Table 2). Each of the trend
intervals, with the exception of the NS interval, are composed only of 1-
degree significant maxima or non-significant frequencies in their respective
analyses. The NS interval contains significant l-degree minima as well, but
the pattern of the maxima and minima in this interval is distinctly different
than the dominantly minima zones on either sides.

From inspection of the results of the frequency analysis shown in Figure
4, the NS, NE, and NW intervals (Table 2) were further subdivided for geologic
analysis. These subdivisions, shown in Table 3, were selected on the basis of
the distribution of significant maxima within each larger interval. The
subdivided trend intervals proved to be the more useful during geologic

interpretation.

14
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Table 2. Important trend intervals determined by strike-frequency analysis of
the linear features data of the Four Corners region.

Interval Designation Strike Range Width (degrees)
1. NS N1OW-N16E 27
2. NE N35-72E 38
3. NW N33-59W 27
4, WNW N74-83W 10
5. EW N89-90W and N89-90E 3

Table 3. Subdivisions of major intervals based on inspection of maxima
distribution in the major trend intervals.

Major Interval Subdivisions Width (degrees)

N1OW-N16E 27
NO-16E 17

NO-10W 11

N35-72E 38

' N35-57E 23

N33-59W 27
N33-43W 11

N43-59W 15

16



Trend Interval Maps

Strike-frequency analysis is a method for identifying the prominent trend
intervals present in the linear features data, however, it tells little or
nothing about the possible geologic importance of these trends in the
region. To evaluate the linear feature data in a geologic context, the
distribution of the linear features in the important trend intervals must be
considered. Regional patterns displayed by the linear features can provide a
basis for delineating new geologic information and relationships that may be
expressed in the linear feature data.

Using computer graphics, two sets of maps showing the regional
distribution of the linear features in the important trend intervals were
prepared. The first set (Appendix B) 1is a series of maps that show the
individual 1linear features in each of the important trend intervals. The
second set (Appendix C) is a series of contour maps that show the relative
concentrations of the linear features in the important trend intervals. The
linear feature concentration maps are particularly useful for delineating
regional distribution patterns that are more difficult to visualize on the
linear feature trend maps.

GEOLOGIC INTERPRETATION

Geologic interpretation of the linear feature data consists of examining
the linear feature and concentration maps for patterns that may represent
geologic phenomena. Two types of linear patterns were defined in the Four
Corners region: 1) a boundary lineament that divides the area on the basis of
relative linear feature concentration and 2) derivative lineaments defined by
elongated axes of high linear feature concentration that trend parallel to the
linear features that form the cbncentrations. The interpreted lineaments were

compared to regional geologic and geophysical data to determine possible

17



causes of the lineaments and to recognize new geologic relationships. In most
cases, the lineaments correspond with geologic or geophysical phenomena,
although the direct cause of the lineaments was not determined. In some
cases, however, lineaments cannot be strongly associated with known geologic
or geophysical data; a clearer definition of these lineaments would probably
require substantial additional study, including detailed field work. Figure 5
shows the various lineaments interpreted from the linear data of the Four
Corners region.

Domain Boundary Lineament

The most prominent pattern in the linear feature data is a relatively
abrupt change in the overall linear feature concentration that occurs along a
northwest-trending curvilinear line in the southwestern portion of the area
(Fig. 5) This change is apparent on each of the linear feature concentration
maps (Appendix C), although the boundary is slightly displaced from trend
interval to trend interval; the domain boundary lineament is shown as a zone
on Figure 5 that approximately represents the range of boundary locations seen
on the various trend interval concentration maps.

The domain boundary lineament warks a regional geomorphic change
reflected in the degree of dissection and drainage patterns. Southwest of the
lineament is an expanse of relatively undissected plateaus characterized by a
parallel drainage pattern formed by northeast-trending tributaries of the
Little Colorado River. Because of relatively slight dissection of the plateau
surfaces, topopraphically—-expressed linear features are few. Northeast of the
lineament plateaus and mesas are numerous; however, there are also monoclinal
uplifts, and the undulating regional topographic surface shows a relatively
high degree of dissection, and drainage patterns in this region are

correspondingly much more complex than southwest of the lineament. The

18



+ 38°

b cn—

50KM

)

0QvH0100

o

e———+ 37

L1
+

o}
(V)
<
<
o
2
(=]

COLORADO

GALLUP
19

OOJX3IN M3N

7. .
//;//////////////////

UTAH

A

Limit of Landsat linear feature data shown by

jon.

Location of the domain boundary lineament and derivative |ineaments

@ FLAGSTAFF

in the Four Corners reg
boundary around |ineaments.

Figure 5.



relatively undissected terrane southwest of the domain boundary 1lineament
extends southwestward to the Mogollon Rim (Fig. 1), which marks the boundary
between the Colorado Plateau and the Basin and Range tectonic provinces.
Southwest of the Mogollon Rim, Basin and Range structure and topography are
responsible for the relatively high linear feature concentrations seen in the
southwestern part of the study area.

Other geologic and geophysical data suggest that the geomorphic change
represented at the domain boundary lineament does not merely mark a transitory
stage in the geomorphic evolotion of the region, but is a geological line that
has appeared periodically through time. The establishment of the northwest-
trending line is first suggested by the thickness of Devonian strata in the
region (Barrs, 1972, p. 94, Fig. 4). The domain boundary lineament lies along
the northeastern flank of a conspicuous northwest-trending axis of thin
Devonian rocks and appears to delimit the southern extent of the Devonian
Ouray Limestone in northeastern Arizona. In Pennsylvanian rocks, the domain
boundary lineament coincides with the northwest-trending axis of thin strata
that connects the Zuni-Defiance platform with the Piute platform in southern
Utah (Mallory, 1972, p. 115, Fig. 4). This arch is parallel to the
Pennsylvanian Uncompahgre uplift and appears to mark the southwestern limit of
the Paradox basin in Pennsylvanian time. Isopachs of Jurassic rocks generally
parallel the trend of the domain boundary lineament except in west-central New
Mexico, and the lineament seems to reflect the orientation of the upland area
providing sediments northeastward in Jurassic time (Peterson, 1972, p. 180).
Within the package of Jurassic rocks in the area, it 1is interesting that
isopachs of Morrison age strata not only have the same general trend as the
lineament, but also have the same general shape, and the southwestern edge of

these rocks lies only a few kilometers southwest of the lineament (Peterson,
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1972, p. 15, Fig. 8). 1In Pliocene time, interbedded fluvial and lacustrine
sediments, mafic lava flows, and rhyolite ash beds of the Bidahochi Formation
(Hackman and Olson, 1977) accumulated in a northwest-trending topographic low
that parallels and lies partially within the lineament zone in east-central
Arizona southeast of Black Mesa. The Hopi Buttes volcanic field lies along
the lineament at the northwestern end of the Bidahochi Formation outcrops, and
most of the numerous dikes within the volcanic field are oriented to the
northwest, parallel to the lineament (Akers and others, 1971).

Geologic structures also seem to reflect the presence of a geological
line that corresponds to the domain boundary lineament. Only two major
monoclines of the Colorado Plateau (Kelley, 1955; Davis, 1978), the Echo
Cliffs and Kaibab monoclines, extend south of the lineament, and these are, in
part parallel to it. Three monoclines the Cow Springs, East Defiance, and
West Defiance monoclines, terminate at the lineament, and the smaller Red Lake
monocline parallels the lineament zone and lies totally within the zone.
Likewise, small folds are more numerous northeast of the domain boundary
lineament. Near the lineament, most of these folds parallel the lineament
zone, and numerous examples occur where northerly trending folds either turn
to parallel or terminate as the lineament zone is approached. West of about
111°W. the domain boundary lineament corresponds with a closely-spaced set of
northwest—trending faults in the Navajo Sandstone (Cooley and others, 1969)
that marks the Morman Ridges fault system of Shoemaker and others, 1978, p.
352.

The domain boundary lineament appears to have a subtle expression on a
residual Bouguer gravity map of Arizona prepared by Aiken (1975). The major
gravity anomaly in northeastern Arizona is a broad, northeast-trending gravity

high with a relatively sharply defined gravity gradient along its southeastern
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side. Where the domain boundary lineament intersects this gradient, the
gravity contours swing abruptly from the northeast trend to a southeast trend
paralleling the lineament. On the other hand, regional aeromagnetic data
(Sauck and Sumner, 1970) do not appear to reflect the lineament.

Finally, occurrences of uranium/vanadium in eastern Arizona (Keith, 1969)
are conspicuously absent from the domain boundary lineament zone, although
they are present up to both zone boundaries. This relationship suggests some
type of control on uranium/vanadium occurrences by the lineament zone, perhaps
on the accumulation of suitable sedimentary host rocks or on the ground-water
regime responsible for carrying these elements to their point of deposition.

Derivative Lineaments

Contour maps of the relative concentrations of linear features in each of
the important trend intervals defined during statistical analysis were
prepared for interpreﬁation. The contour maps were overlaid on their
respective linear features maps and a search was made for clusters of parallel
and en echelon 1linear features that form concentration contour patterns
elongated in the direction of the trend of the linear features. Where this
condition was found, a derivative lineament was visually drawn along the axis
of the cluster as depicted on the contour map. Using this technique, 19
derivative lineaments were defined (Fig.5). Appendix D shows the
interpretation of the derivative lineaments on the linear feature and linear
feature concentration maps of the important trends intervals used in this
study.

The reader should keep firmly in mind that the derivative lineaments do
not represent knife-edge geological lines that can necessarily be a) seen on a
Landsat image or b) easily found in the field. The derivative lineaments are,

in effect, statistically defined lines and, consequently, some latitude must

22



be allowed as to their precise meaning and location, particularly during
geologic analysis. My interpretation of derivative lineaments is that they
represent an approximation of the location of the center of the surface
expression of regional linear structural zones of generally variable but
undeterminable width. If these zones are controlled by basement structures,
then the derivative lineaments represent the approximation of the location of
the basement 2zones at depth. Where the basement rocks are exposed, the
derivative lineaments might be expected to be more accurately located than
where the basement is overlain by hundreds or thousands of feet of sedimentary
and volcanic rocks.

Each of the derivative lineaments was compared to various small-scale
geologic and geophysical maps (1:250,000 or smaller) to see what geologic
relationships might exist along their trend, These observations are described
below. Plate 1 shows the tectonic setting of the derivative lineaments.

North-Trending (L1-3): Derivative lineaments 1, 2, and 3 (Figs. 5 and Plate

1) trend in a general north-south direction and were defined from the linear
features map and concentration map of linear features in the N. 0°-16°E. trend
interval (Appendix D). Lineament 1 (L1) is south of Pagosa Springs, Colorado,
in Archuleta County, Colorado, and Rio Arriba County, New Mexico, in the
northeastern corner of the San Juan Basin. It marks the center of a swarm of
north-to-north-northeast trending dikes of intermediate to silicic composition
(Steven and others, 1974). The dikes form linear ridges that are in contrast
to the surrounding topography, making them easy to recognize and map on
Landsat images.

Lineament 2 (L2) appears to be defined by linear features that reflect
the numerous north-trending faults and fractures associated with the eastern

side of the Rio Grande rift zone from northeast of Albuquerque to near
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Socorro, New Mexico. The northern part of L2 trends along the uplifted
eastern shoulder of the rift, but to the south it more nearly marks the
boundary between grabenfill sediments to the west and uplifted Paleozoic and
Precambrian rocks to the east.

Lineament 3 (L3) coincides with a long segment of the Oak Creek Canyon
fault system of Shoemaker and others (1978, p. 353), north of the San
Francisco volcanic field near Flagstaff, Arizona. The 1linear feature
concentration map suggests that L3 may be expressed again south of the
volcanic field, but these data are too close to the edge of the data set for a
confident interpretation of the contour pattern. Shoemaker and others (1978,
p. 358) note that the Oak Creek Canyon fault system (and L3) corresponds to a
north-trending magnetic anomaly boundary that is probably controlled by faults
with large displacement in the Precambrian basement. However, in a regional
sense, the aeromagnetic pattern is not particularly striking (Sauck and
Sumner, 1970).

Northeast-Trending (L4-12): Nine northeast trending derivative lineaments

were interpreted from the linear feature and concentration maps of the N.35°-
57°E. and N.58°-72°E. trend intervals (Appendix D). Lineament 4 (L&) ﬁrends
from the Sleeping Ute Mountain igneous center in the southwestern corner of
Colorado northeastward to the intrusive center in the San Miguel Mountains
near Rico, Colorado. Between these two igneous centers L4 generally
corresponds to the House Creek fault and several other faults along the same
trend (Haynes and others, 1972). L4 is not dramatically expressed omn
aeromagnetic data, although it does correspond with the abrupt termination of
the southeastern end of a northwest-trending magnetic high (Zietz and Kirby,
1972). 1In the same area as the apparent magnetic expression, the southwestern

half of L4, there is also a conspicuous interruption in the general northwest
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trend of gravity contours (Behrendt and Bajwa, 1972). The northeast half of
L4 does not seem to be expressed on either aeromagnetic or gravity data.

Lineament 5 (L5) extends from about 14 km northeast of the Echo Cliffs
monocline 70 km northeastward across northern Arizona. It approximately marks
the northeast-~trending boundary between the Kaiparowits Basin and the Kaibito
Saddle tectonic divisions of the Colorado Plateau mapped by Kelley (1955, p.
23). L5 also corresponds to a diffuse family of relatively short, northeast-
trending faults recognized by Shoemaker and others (1978, p. 344) as the
northeastward extension of the Bright Angel fault system that cuts Jurassic
rocks from the Navajo Sandstone to the Morrison Formation (Haynes and Hackman,
1978). In aeromagnetic data (Sauck and Sumner, 1970), L5 appears to be
expressed by an elongated pattern of high magnetic anomalies and is also on
strike with a major northeast—-trending zone of basement faulting inferred from
magnetic and gravity data by Case and Joesting (1972, Pl. 3) immediately
northeast of the northeast end of LS.

Lineament 6 (L6) is parallel to and lies several kilometers southeast of
the northeast-trending northwest edge of outcrops of Cretaceous rocks in the
central Black Mesa Basin area of northeastern Arizona. The northeast-
trending, southeast-facing Organ Rock monocline also parallels this erosional
edge of Cretaceous rocks, but lies several kilometers to the northwest of
it. It is tempting to relate L6 directly to the Organ Rock monocline;
however, inspection of the Landsat linear features that form the concentration
pattern defining L6 shows that they are primarily exceptionally linear
topographic elements associated with Moenkopi Wash from its intersection with
Black Mesa Wash northeastward. This family of linear features is clearly
different from those mapped along the Organ Rock monocline. A glance at

1:250,000- and 1:500,000-scale topographic maps of the area reveals that
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Moenkopi Wash is an anomalously straight drainage line for about 50 km; other
drainages developed on the Cretaceous rocks of the Black Mesa area are also
northeast—-trending, but they do not maintain linearity for such long
distances. No major geologic structures have been documented near Moenkopi
Wash. Dips in the Cretaceous rocks are gentle, mostly less than 5°, and
minor, broad folds generally trend northwestward across L6. However, minor
deflections in the trends of the Cow Springs anticline and the Maloney and
Tynde Creek synclines appear to occur where they cross L6. Taken together,
the above observations suggest that L6 may mark a fault or fault zone
associated with Moenkopi Wash, yet, no faults have been mapped in the vicinity
of L6 (Haynes and Hackman, 1978) and gravity and aeromagnetic maps do not
reveal evidence for a northeast-trending structure in the area.

Lineament 7 (L7) is the longest of the derivative lineaments, extending
190 km from the Chinle monocline near Canyon De Chelly in northeastern
Arizona, across northwestern New Mexico, to the La Plata dome igneous center
in southwestern Colorado. Geophysical data indicate that L7 represents a
segment of a much longer northeast-trending discontinuity in the Precambrian
basement of the Four Cormers region (Cordell, 1978, p. 1076). On gravity maps
(Aiken, 1975; Suits and Cordell, 1981), L7 lies along a northeast~trending
gravity gradient marking the southeastern flank of a broad, northeast-trending
gravity high extending from northeastern Arizona to the San Juan volcanic
field in southwestern Colorado. This boundary also corresponds to a
northeast-trending belt of magnetic anomalies in Arizona (Sauck and Sumner,
1970) that extends from the southwestern end of L7 southwestward through the
Hopi Buttes volcanic center to near Phoenix, Arizona. Several other
observations suggest that L7 is a real geological line. In the area of the

Defiance uplift, intrusive rocks are so common that it is difficult to see any
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clear alignment of the features related to L7. However, northeast of the
Defiance uplift there does appear to be an alignment of intrusive bodies,
including northeast-trending minette dikes at Popping Rock, the Shiprock
intrusives, minette plugs and northeast-trending dikes near where L7 crosses
the Mancos River south of Mesa Verde, and the LaPlata igneous center, from
southwest to northeast (0'Sullivan and Beikman, 1963). L7 passes along the
Mancos River which marks a geomorphic boundary between the deep, closely-
spaced, north to north-northwest oriented canyons of Mesa Verde on the north
and the less—numerous canyons of various orientations to the south. Also in
this area, L7 passes through the center of the Cretaceous Mesa Verde Basin,
which is elongated in a northeast direction along L7 (Haynes, Vogel, and
Wyant, 1972). Structurally, the northeastern two-thirds of L7 does not seem
to be expressed by mapped structures, although it is parallel to the Hogback
monocline about 20 km to the southeast. Where L7 intersects the east flank of
the Defiance wuplift, however, the bounding Mitten Rock monocline swings
abruptly from a north trend to a northeast trend and tends to merge with the
Defiance monocline. This results in a conspicuous kink along the east flank
of the Defiance wuplift. Where L7 crosses the Defiance monocline, the
monocline abruptly changes from gentle dips north of L7 to steep dips south of
the lineament. At its southwestern end, L7 is parallel to the Tsaile graben
about 6 km to the southeast.

Lineament 8 (L8) strikes northeastward across the central San Juan Basin
and is entirely within the outcrop area of Tertiary sedimentary rocks. These
rocks are more dissected than the surrounding Cretaceous rocks and this may,
in part, account for the recognition and mapping of more numerous linear
features in the vicinity of LS. However, it is apparent that most of the

mapped linear features in this area are oriented in a northeast direction.
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There are no folds or faults mapped in the vicinity of L8 (Manley and Scott,
1978) with which to make comparisons of structural orientations. But L8 does
mark the axis of a northeast—-trending prong of high gravity that protrudes
northeastward across the center of the San Juan Basin (Suits and Cordell,
1981) suggesting that there may be a northeast-trending feature in the
Precambrian basement that has influenced the development of northeast—-trending
linear features in the Tertiary sediments.

Lineament 9 (L9) extends northeastward from the southern end of the East
Defiance monocline on the New Mexico-Arizona border, across the northwest tip
of the Zuni uplift, to a point about 10 km north of Chaco Canyon. L9 marks
the southward termination of the East Defiance monocline and the northward
termination of the Nutria monocline. This is the type of criterion used by
Davis (1978) to infer the presence of major fracture zones in the Precambrian
basement of the Colorado Plateau. An aeromagnetic map of the San Juan Basin
prepared by the U.S. Geological Survey (1982) shows that L9 trends along the
southeastern flank of a northeast-trending ridge of high magnetic intensity
that may reflect a highly magnetic intrusive body at depth. The strong
northeastward elongation of the magnetic pattern is suggestive of structural
control, probably in the Precambrian basement. At the surface, L8 passes
through an area in which 2 relatively long northeast-trending linear features
were mapped on the Landsat images. One of the linear features is along
Pipeline Valley and is particularly long because it passes northeastward
across a drainage divide and continues northeastward along Pinetree Canyon as
well. The second long linear feature is along Hard Ground Canyon immediately
west of Pipeline Valley. The length and straightness of these linear features
strongly suggests the presence of faults, but none are shown on published maps

of the area. Pipeline Valley is particularly suspect because of the differing
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nature of the geomorphic character of the terrane on opposite sides of the
valley. L8 also marks the northwest end of the Gallup-Grants uranium belt
(Melvin, 1976).

Lineament 10 (L10) cuts northeastward across the north end of the Sandia
Mountains east of Albuquerque, New Mexico. It passes south of where the
eastern boundary fault of the Rio Grande graben, the Rincon fault, swings
northeastward and splays into four faults, and north of the northeast-trending
Tijeras fault zone. The Landsat linear features forming the concentration
pattern that definmes L10 include linear features reflecting both of these
structural zones; however, most of the linear features appear to be reflecting
the numerous northeast-trending faults that occur in the intervening area,
such as the Forest, Perlas del Polvo, and Seco faults and the north end of the
Barro fault (Kelley and Northrop, 1975). The change from the north trend to
the northeast trend of the eastern margin of the Rio Grande graben at the
north end of the Sandia Mountains is dramatically displayed in the change in
orientation of the steep gravity gradient that works the edge of the graben
(Suits and Cordell, 1981). L10 lies along the top (south) edge of this
gravity gradient.

Lineament 11 (L11) follows a band of mountainous terrain in west-central
New Mexico separating the Quaternary basalt surface of the North Plains on the
north from the Quaternary alluvial deposits of the Plains of San Augustine on
the south. There appears to be a relatively high concentration of linear
features in this area because the alluvium and youthful basalts are not
fractured or existing fractures have not been erosionally enhanced to the
point of being recognizable on Landsat images; however, the linear features
present show a strong preferred orientation in a northeastern direction. The

southwest end of Lll1 corresponds with the northeast end of a northeast-
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trending 2zone of faults that can be traced southwestward into eastern
Arizona. L1l appears to express a northeastward continuation of this zone of
fracturing, although no faults have been mapped. There is no recognizable
expression of L1l on available gravity maps.

Lineament 12 (L12) is a relatively short derivative lineament at the
southeastern corner of the study area east of Socorro, New Mexico. It
approximately marks the path of the Morenci lineament, a major tectonic zone
that extends southwestward well into Arizona. The lineament has had a
significant influence on the tectonic and magmatic history of the Socorro
region. West of Socorro, the Morenci lineament is a shear zone that ;eparates
domains of fault blocks that have been tilted and step faulted in opposite
directions (Chapin and others, 1978, p. 115). East of Socorro, the lineament
appears to be expressed by numerous northeast—-trending Tertiary dikes exposed
to the vicinity of Canyon Cueva and short, northeast—-trending faults a few
kilometers east of Socorro (Machette, 1978).

Northwest Trending (L13-19): Seven northwest-trending derivative lineaments

were interpreted from the linear feature and concentration maps of the N.33-
43W. and N.43-59W. trend intervals (Appendix D). Lineament 13 (L13) marks the
northeastern border of the Kaiparowits Plateau, and is the only derivative
lineament in Utah. The northeastern edge of the Kaiparowits Plateau is the
long erosional scarp of Straight Cliffs, where the resistant capping sandstone
units of the Cretaceous Straight Cliffs Sandstone are exposed (Hackman and
Wyant, 1973). L13 does not correspond with a known regional structural
feature and minor folds in the area show no relationship to the lineament.
However, the length and linearity of the Straight Cliffs is certainly
suggestive of some type of structural control. The southern two-thirds of L13

does correspond with the straight northeast boundary of a northwest-trending
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Bouguer gravity low (Cook and others, 1975). In addition, L13 is a segment of
the Zuni lineament of Kelley (1960) and Kelley and Clinton (1960), which was
believed to be the most important structure-controlling lineament on the
Colorado Plateau.

Lineament 14 (L14) also follows the trend of the Zuni lineament (Kelley,
1955; Kelley and Clinton,1960). The northwestern two-thirds of the Ll14 trends
along the band of Cretaceous Yale Point Sandstone, Mancos Shale, Dakota
Sandstone, Wepo Formation, and Toreva Formation outcrops at the northeastern
edge of Black Mesa (Haynes and Hackman, 1978). To the southeast, Ll4 strikes
off of Black Mesa, cutting across formational contacts until its termination
in the vicinity of the Tsaile graben south of Canyon de Chelly. Along this
segment, Ll4 cuts across structure contours on the base of the Dakota
Sandstone at a high angle and no minor structures have been mapped that
parallel Ll14 (O'Sullivan and Beikman, 1963). Along the edge of Black Mesa,
however, Ll4 parallels the northwest—trending Rim syncline until this fold
dies out: then it trends parallel to the structure contours on the base of
the Dakota Sandstone until its northwest termination at the north~-trending
Organ Rock monocline near Marsh Pass. Along the northwestern one-thrid of
L14, there are numerous north- to northeast-trending minor folds in the
Jurassic Morrison Formation northeast of Ll4 that end abruptly at Ll4. In the
Cretaceous rocks southwest of this portion of Ll4, minor folds are absent and
the strata dip gently to the southwest (Haynes and Hackman, 1978). Several
Tertiary minette dikes parallel L1l4, but they lie 8-12 km northeast of the
lineament (Haynes and Hackman, 1978; 0O'Sullivan and Beikman, 1963). There is
no strong or sharp expression of Ll4 on aeromagnetic data. However, southwest
of L14 anomalies tend to be elongated to the north or northeast, whereas

northeast of Ll4 they tend to be oriented in a northwest direction (Sauck and
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Sumner, 1970). On gravity data (Aiken, 1975), Ll14 corresponds to the axis of
a shallow northwest-trending gravity depression that is transverse to the
major northeast-trending regional gravity high in northeastern Arizona. The
northeast-trending gravity contours that define the gravity gradient along the
southeast edge of the regional gravity high swing abruptly to the southeast
where they are intersected by L14, suggesting that Ll4 does mark some type of
discontinuity in the basement rocks.

Lineament 15 (L15) trends northwestward from near South Garcia in
Valencia County, New Mexico, across the Mount Taylor volcanic center, to Mesa
Redonda about 10 km west—-northwest of Ambrosia Lake, New Mexico. This marks a
large segment of the Grants mineral belt, which 1s characterized by 1large
uranium deposits in the Jurassic rocks on the north flank of the Zuni uplift
(Melvin, 1976). The derivative lineament also coincides with the northeastern
extent of gypsum—dolomite facies in Permian eolian sandstones and red beds of
Leonardian age and marks a northwest-trending axis of relatively thick
Leonardian (Rascoe and Barrs, 1972, p. 153, Fig. 7). Structurally, the
southeast end of Ll15 marks the tectonic boundary between the Rio Puerco fault
zone on the north and the Lucero uplift on the .south (Kelley and Clinton,
1960; Callender and Zilinski, 1976, p. 53, Fig. 1). However, there are few
northwest—-striking faults along the trend of L15 and, indeed, L15 is
transverse £o the northeast structural grain in the Rio Puerco fault zone and
the Lucero uplift.

Lineament 16 (L16) begins at the east side of Caja del Rio Plateau about
15 km west of Santa Fe, New Mexico, and trends northwesterly across the center
of the Vallez caldera to the Nacimiento fault along the west flank of San
Pedro Mountain. Northwest of the Vallez caldera there are several northwest-

trending structures that are parallel to L16 and are within a few kilometers
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of it (Manley and Scott, 1978). Southeast of the caldera, there are
northwest-trending faults along Canon de Los Frijoles and Alamo Canyon that
lie near L16 (Smith and others 1970). 1In general, though, existing geologic
mapping does not depict any obvious structural 2zone corresponding to L16.
Geophysical data, however, suggest quite the opposite. On gravity and
aeromagnetic maps the northerly trend of the western margin of the Rio Grande
south of L16 turns abruptly to the northwest following L16 for several
kilometers before turning back to a northerly trend (Cordell, 1976). Gravity
data also show that L16 marks the northern end of a well-defined, narrow,
north-trending gravity high associated with the Nacimiento uplift. Steep,
north-trending gravity gradients on both sides of the gravity high abruptly
turn northeastward when they intersect Ll16, and the gradient on the west side
also decreases markedly in steepness. If L16 is projected southeastward to the
eastern margin of the Rio Grande graben, it intersects at the point where the
margin changes from a northeast trend along the north end of the Sandia
Mountains to a mnorth trend along the base of the Sandgre de Cristo
Mountains. Projected to the northwest, L16 marks the northwest-trending oil
and gas field in the San Juan Basin. Patterns on regional gravity maps
(Cordell and others, 1978; Cook and others 1975) suggest that L16 may be a
segment of a gravity lineament that extends as much as 350 km southeast of L16
and northwestward perhaps as far as the Glen Canyon area on southeastern Utah.

Lineaments 17 trends northwestward across volcanic terrain from the
Plains of San Augustine in west-central New Mexico to near the New
Mexico/Arizona border. The northern two-thirds of L17 is subparallel to and
falls within the boundary domain lineament described earlier, but, in general,
geologic evidence for a structural zone along the trend of L17 is scant. L17

generally crosscuts regional topographic features, although there is some
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local parallelism. A few kilometers north of L17 there are several northwest-
trending dikes and the north end of L17 is near a northwest—-trending fault
that extends from near Atargue Lake to near Ajo Caliente. On gravity data
(Suits and Cordell, 1981), the southeastern one-half of L17 lies along a
northwest—-trending ridge of high gravity and the northwestern one-half seems
to mark the southern end of a northeast—-trending gravity high and parallel low
extending southwestward from the Zuni uplift.

Lineament 18 extends northwestward from Chevelon Canyon about 8 km
upstream from Chevelon Canyon Lake in the southeast corner of Coconino County,
Arizona, across the Mogollon Plateau to Sycamore Creek at it intersection with
Volunteer Canyon about 30 km southeast of Flagstaff, Arizona. The
southeastern one-third of L18 occurs in Permian sedimentary strata, whereas
the remainder is in Tertiary and Quaternary basalts (Wilson and others,
1969). There are a few minor folds in the Permian strata that have the same
general trend as L18, and several faults with the same trend as L18 have been
mapped in the basalts. At its northwest end, L18 matches up with the
southeastern end of the northwest-trending Cataract Creek fault system mapped
by Shoemaker and others (1978). The number and length of the linear features
mapped from the Landsat images in the area of L18 certainly suggests that the
Cataract Creek system continues to the southeast along L18, although it may be
dominated by fractures, rather than faults. L18 appears to correspond with
the southwestern edge of a belt of northwest-trending aeromagnetic highs
(Sauck and Sumner, 1970), but no expression of L18 was seen on gravity data
(Aiken, 1975).

Lineament 19 (L19) is in central Arizona about 75 km south of L18. It
trends northwestward from the Tonto Basin near Pine Butte, across the Mazatzal

Mountains to the Black Hills about 2 km south-southwest of Squaw Peak. The
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southeastern two-thirds of L19 traverses Precambrian rocks with major faults
oriented north-northeast to northeast. The northwestern one-third of LI19
traverses Tertiary and Quaternary basaltic rocks with dominant faulting
oriented north-northwest to northwest. In general, the evidence for a
structural zone along the trend of L19 is not strong. However, if L19 is
projected northwestward, it marks the trend of numerous northwest-trending
faults in the Black Hills and near Jerome, Arizona, that connect to the Chino
Valley fault system of Shoemaker and others (1978). L19 may not represent a
southeastern extension of the Chino Valley fault system, but it might reflect
a belt of northwest-trending fractures related to it. Aeromagnetic anomalies
in the vicinity of L19 are generally oriented northwestward, but L19 does not
seem to be singly expressed (Sauck and Sumner), 1970). There are no gravity
anomaly patterns corresponding to L19 (Aiken, 1975).
SUMMARY

As the term is used in this study, "linear features” are relatively
short, distinct, non-cultural linear elements mappable on Landsat MSS
images. In this study, as is generally the case, most of the linear features
represent linear topographic features, such as cliffs, slope breaks, narrow
ridges, and stream valley segments that are interpreted as reflecting directed
aspects of local geologic structure, including faults, zones of fracturing,
and the strike of tilted beds. Because of spatial and spectral resolution
limitations of the Landsat system, as well as the failure of many geologic
structures to be adequately expressed at the earth's surface, many of the
geologic structures in a local area may not be recognized on Landsat MSS
images. However, mapping of linear features on MSS images provides a sample

of the directed geologic structure present.
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Landsat MSS images provide a means of acquiring a sample of geologic
structures over large areas rapidly and relatively inexpensively. While these
data may be insufficient for detailed structural studies of local areas, they
are useful for looking for regional relationships indicative of large, often
subtly expressed, tectonic features. The analysis techniques used in this
study were designed expressly for this purpose.

Computer—enhanced MSS images of eleven Landsat scenes covering the Four
Corners region were prepared and used to photographically map 6,050 linear
features. Many known faults or segments of known faults were mapped as linear
features, however, the number of linear features is many times greater that
the number of known faults. This indicates that most linear features
represent some other type of geologic structure; I believe that most linear
features are controlled by jointing in the rocks exposed at the surface.

The linear features map prepared for the Four Corners region is much too
complex to analyze visually for regional geologic relationships.
Consequently, computer techniques were used to break the data into important
parts and to analyze these parts. The preferred orientation characteristics
of the data set were determined by statistical methods and regionally
important intervals were selected from the results of statistical analysis.
To evaluate the spatial distribution characteristics of linear features in
important trend intervals, computer-generated maps of the linear features in
each important trend interval were prepared, as well as contour maps of the
relative concentrations of linear features in each important treund interval.
These maps were then visually analyzed for linear patterns that might reflect

tectonic lines.
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Twenty possible tectonic lines, or lineaments, were interpreted during
the study. One lineament, the domain boundary lineament, is a northwest-
trending curvilinear zone that separates overall high linear feature
concentration to the northeast from relatively low linear feature
concentration to the southeast. The domain boundary lineament appears to mark
a geological line that has periodically appeared beginning at least by late
Paleozoic time. Of particular interest is the paucity of uranium/vanadium
occurrences within the lineament =zone, while reported occurrences are
relatively numerous on either side of the lineament zone and up to the zone
boundaries.

The remaining 19 lineaments are termed derivative lineaments to emphasize
that they are not lineaments directly observable on the Landsat images as
individual 1linear features. Rather, they are lines marking the axis of
clusters of linears features elongated in the same direction as the linear
features that form the clusters, visually interpreted from the trend interval
concentration and linear features maps. The reason for mapping derivative
lineaments involves the simple concept that elongated clusters of Ilinear
features, presumably representing belts of directed geologic structures of
which most are fractures, may reflect major tectonic lines. Indeed, several
of the derivative lineaments correspond with known fault zones for which
evidence of control by the Precambrian basement is very strong. Several other
derivative lineaments are not expressed at the surface by known structural
zones, but they do mark lines of curious geological associations and/or
geophysical features that are suggestive of buried basement features. The
remaining few derivative lineaments do not have strong geological or
geophysical associations, yet they cannot be dismissed as possible reflections

of buried basement phenomena at this time.
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EMPIRICAL STRIKE FREQUENCY ANALYSIS.

FOUR CORNERS LINEAR FEATURES
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EMPIRICAL STRIKE FREGUENCY ANALYSIS,
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ArreNDIA D

Computer-generated Linear Feature and Linear Feature Concnetrations Maps of the Important

Azimuthal Trend Intervals Used in This Study, Showing the Interpretation

Lineaments
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